Efficient tensor completion: Low-rank tensor train
نویسندگان
چکیده
This paper proposes a novel formulation of the tensor completion problem to impute missing entries of data represented by tensors. The formulation is introduced in terms of tensor train (TT) rank which can effectively capture global information of tensors thanks to its construction by a wellbalanced matricization scheme. Two algorithms are proposed to solve the corresponding tensor completion problem. The first one called simple low-rank tensor completion via tensor train (SiLRTC-TT) is intimately related to minimizing the TT nuclear norm. The second one is based on a multilinear matrix factorization model to approximate the TT rank of the tensor and called tensor completion by parallel matrix factorization via tensor train (TMac-TT). These algorithms are applied to complete both synthetic and real world data tensors. Simulation results of synthetic data show that the proposed algorithms are efficient in estimating missing entries for tensors with either low Tucker rank or TT rank while Tucker-based algorithms are only comparable in the case of low Tucker rank tensors. When applied to recover color images represented by ninthorder tensors augmented from third-order ones, the proposed algorithms outperforms the Tucker-based algorithms.
منابع مشابه
Tensor Completion by Alternating Minimization under the Tensor Train (TT) Model
Using the matrix product state (MPS) representation of tensor train decompositions, in this paper we propose a tensor completion algorithm which alternates over the matrices (tensors) in the MPS representation. This development is motivated in part by the success of matrix completion algorithms which alternate over the (low-rank) factors. We comment on the computational complexity of the propos...
متن کاملEfficient Sparse Low-Rank Tensor Completion Using the Frank-Wolfe Algorithm
Most tensor problems are NP-hard, and low-rank tensor completion is much more difficult than low-rank matrix completion. In this paper, we propose a time and spaceefficient low-rank tensor completion algorithm by using the scaled latent nuclear norm for regularization and the FrankWolfe (FW) algorithm for optimization. We show that all the steps can be performed efficiently. In particular, FW’s...
متن کاملRank Determination for Low-Rank Data Completion
Recently, fundamental conditions on the sampling patterns have been obtained for finite completability of low-rank matrices or tensors given the corresponding ranks. In this paper, we consider the scenario where the rank is not given and we aim to approximate the unknown rank based on the location of sampled entries and some given completion. We consider a number of data models, including singl...
متن کاملScaled Nuclear Norm Minimization for Low-Rank Tensor Completion
Minimizing the nuclear norm of a matrix has been shown to be very efficient in reconstructing a low-rank sampled matrix. Furthermore, minimizing the sum of nuclear norms of matricizations of a tensor has been shown to be very efficient in recovering a low-Tucker-rank sampled tensor. In this paper, we propose to recover a low-TT-rank sampled tensor by minimizing a weighted sum of nuclear norms o...
متن کاملLow rank tensor recovery via iterative hard thresholding
We study extensions of compressive sensing and low rank matrix recovery (matrix completion) to the recovery of low rank tensors of higher order from a small number of linear measurements. While the theoretical understanding of low rank matrix recovery is already well-developed, only few contributions on the low rank tensor recovery problem are available so far. In this paper, we introduce versi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1601.01083 شماره
صفحات -
تاریخ انتشار 2016